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INTRODUCTION

To this point our focus has been primarily on estimating the mean effect, and in that

context variation in effect sizes served primarily to qualify the mean effect. For

example, we used the variation to assign weights for computing the mean effect, and

to make projections about the distribution of true effect sizes about the mean effect.

Now, our focus shifts from the mean effect to the variation itself. In this chapter we

show how meta-analysis can be used to compare the mean effect for different

subgroups of studies (akin to analysis of variance in a primary study). In the next

chapter we show how meta-analysis can be used to assess the relationship between

study-level covariates and effect size (akin to multiple regression in primary studies).

Consider the following examples.

� We anticipate that a class of drugs reduces the risk of death in patients with cardiac

arrhythmia, but we hypothesize that the magnitude of the effect depends on whether

the condition is acute or chronic. We want to determine whether the drug is effective

for each kind of patient, and also to determine whether the effect differs in the two.

� Our meta-analysis includes 10 studies that used proper randomization techniques

and 10 that did not. Before computing a summary effect across all 20 studies we

want to compute the effect for each group of 10, and determine if the effect size is

related to the kind of randomization employed in the study.
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� We anticipate that forest management reduces the destruction of tree stands

by insect pests, but we hypothesize that the magnitude of the effect depends on

the diversity of trees in the stand. We want to determine whether

forest management is effective in reducing destruction for both single

species and mixed stands, and also to determine whether the effect differs in

the two.

� We have data from ten studies that looked at the impact of tutoring on math scores

of ninth-grade students. Five of the studies used one variant of the intervention

while five used another variant. We anticipate that both variants are effective, and

our primary goal in the analysis is to determine whether one is more effective than

the other.

We shall pursue the last of these examples (the impact of tutoring on math)

throughout this chapter. The effect size in this example is the standardized mean

difference between groups (Hedges’ g) but the same formulas would apply for any

effect size index. As always, if we were working with odds ratios or risk ratios all

values would be in log units, and if we were working with correlations all values

would be in Fisher’s z units.

Assume all the studies used the same design, with some students assigned to be

tutored and others to a control condition. In some studies (here called A) students

were tutored once a week while in the others (B) students were tutored twice a week.

Our goal is to compare the impact of the two protocols to see if either intervention is

more effective than the other.

Note. In this example we will be comparing the effect in one subgroup of studies

versus the effect in a second subgroup of studies. The ideal scenario would be to

have studies that directly compare the two variants of the intervention, since this

would remove the potential for confounds and also reduce the error term. We

assume that such studies are not available to us.

How this chapter is organized

We present three computational models. These are (a) fixed-effect, (b) random-

effects using separate estimates of �2, and (c) random-effects using a pooled

estimate of �2.

For each of the three models we present three methods for comparing the

subgroups. These are (1) the Z-test, (2) a Q-test based on analysis of variance, and

(3) a Q-test for heterogeneity.

The three statistical models, crossed with the three computational methods, yield

a total of nine possible combinations. These are shown in Box 19.1, which serves as

a roadmap for this chapter. Readers who want to get a sense of the issues quickly

may find it easier to read the introduction and method 1 for each model, and return

later to methods 2 and 3.

The dataset and all computations are available on the book’s web site.
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FIXED-EFFECT MODEL WITHIN SUBGROUPS

A forest plot of the Tutoring studies is shown in Figure 19.1. The five A studies (at the

top) have effect sizes (Hedges’ g) in the approximate range of 0.10 to 0.50. The five B

studies (below) have effect sizes in the approximate range of 0.45 to 0.75.

The combined effect for the A studies (represented by the first diamond) is

0.32 with a 95% confidence interval of plus/minus 0.11. The combined effect for

the B studies (represented by the second diamond) is 0.61 with a 95% confidence

interval of plus/minus 0.12. Our goal, then, is to compare these two effects.
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Figure 19.1 Fixed-effect model – studies and subgroup effects.

BOX 19.1 ROADMAP
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If we were working with a primary study (with Thornhill, Kendall, etc. being

persons in treatment A, and Jeffries, Fremont, etc. being persons in treatment B), we

would compute the mean and variance for each treatment, and our options for

comparing these means would be clear. For example, we could perform a t-test to

assess the difference between means relative to the standard error of the difference.

Or, we could use analysis of variance to assess the variance among groups means

relative to the variance within groups.

In meta-analysis we are working with subgroups of studies rather than groups of

subjects, but will follow essentially the same approach, using a variant of the t-test

or a variant of analysis of variance to compare the subgroup means. For this purpose

we need to perform two tasks.

� Compute the mean effect and variance for each subgroup.

� Compare the mean effect across subgroups.

Computing the summary effects

In Table 19.1 the data for the A studies are displayed at the top, and data for the B

studies are displayed toward the bottom.

To compute the summary effects we use the same formulas that we introduced

for a single group (11.2) to (11.10). The summary effect for subgroup A is computed

using values from the row marked Sum A. The summary effect for subgroup B is

computed using values from the row marked Sum B. The summary effect for all

studies is computed using values from the row marked Sum.

Table 19.1 Fixed effect model – computations.

Study
Effect
size

Y

Variance
Within

VY

Variance
Between

T
2

Variance
Total

V

Weight

W

Calculated quantities

WY WY 2 W 2

A

Thornhill 0.110 0.0100 0.0000 0.0100 100.000 11.000 1.210 10000.000
Kendall 0.224 0.0300 0.0000 0.0300 33.333 7.467 1.673 1111.111
Vandamm 0.338 0.0200 0.0000 0.0200 50.000 16.900 5.712 2500.000
Leonard 0.451 0.0150 0.0000 0.0150 66.667 30.067 13.560 4444.444
Professor 0.480 0.0100 0.0000 0.0100 100.000 48.000 23.040 10000.000

Sum A 350.000 113.433 45.195 28055.556

B

Jefferies 0.440 0.0150 0.0000 0.0150 66.667 29.333 12.907 4444.444
Fremont 0.492 0.0200 0.0000 0.0200 50.000 24.600 12.103 2500.000
Doyle 0.651 0.0150 0.0000 0.0150 66.667 43.400 28.253 4444.444
Stella 0.710 0.0250 0.0000 0.0250 40.000 28.400 20.164 1600.000
Thorwald 0.740 0.0120 0.0000 0.0120 83.333 61.667 45.633 6944.444

Sum B 306.667 187.400 119.061 19933.333

Sum 656.667 300.833 164.255 47988.889
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Computations (fixed effect) for the A studies

MA 5
113:433

350:000
5 0:3241;

VMA
5

1

350:000
5 0:0029;

SEMA
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0029
p

5 0:0535;

LLMA
5 0:3241� 1:96� 0:0535 5 0:2193;

ULMA
5 0:3241þ 1:96� 0:0535 5 0:4289;

ZA 5
0:3241

0:0535
5 6:0633;

pðZAÞ < 0:0001;

QA 5 45:195� 113:4332

350:000

� �
5 8:4316 ð19:1Þ

pðQ 5 8:4316; df 5 4Þ5 0:0770;

CA 5 350:000� 28055:556

350:000
5 269:8413;

T2
A 5

8:4316� 4

269:8413
5 0:0164;

and

I2
A 5

8:4316� 4

8:4316

� �
� 100 5 52:5594:

Computations (fixed effect) for the B studies

MB 5
187:400

306:667
5 0:6111;

VMB
5

1

306:667
5 0:0033;

SEMB
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0033
p

5 0:0571;

LLMB
5 0:6111� 1:96� 0:0571 5 0:4992;
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ULMB
5 0:6111þ 1:96� 0:0571 5 0:7230;

ZB 5
0:6111

0:0571
5 10:7013;

pðZBÞ < 0:0001;

QB 5 119:011� 187:4002

306:667

� �
5 4:5429; ð19:2Þ

pðQ 5 4:5429; df 5 4Þ5 0:3375;

CB 5 306:667� 19933:333

306:667
5 241:667;

T2
B 5

4:5429� 4

241:667
5 0:0022;

and

I2
B 5

4:5429� 4

4:5429

� �
� 100 5 11:9506:

Computations (fixed effect) for all ten studies

M 5
300:833

656:667
5 0:4581; ð19:3Þ

VM 5
1

656:667
5 0:0015; ð19:4Þ

SEM 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0015
p

5 0:0390;

LLM 5 0:4581� 1:96� 0:0390 5 0:3816;

ULM 5 0:4581þ 1:96� 0:0390 5 0:5346;

Z 5
0:4581

0:0390
5 11:7396;

pðZÞ < 0:0001;

Q 5 164:255� 300:8332

656:667

� �
5 26:4371; ð19:5Þ

pðQ 5 26:4371; df 5 9Þ5 0:0017;

154 Heterogeneity



C 5 656:667� 47988:889

656:667
5 583:5871;

T2 5
26:4371� 9

538:5871
5 0:0299;

and

I2 5
26:4371� 9

26:4371

� �
� 100 5 65:96:

The statistics computed above are summarized in Table 19.2.

Comparing the effects

If we return to Figure 19.1 and excerpt the diamonds for the two subgroups we get

Figure 19.2. The mean effect size for subgroups A and B are 0.324 and 0.611, with

variances of 0.003 and 0.003.

Table 19.2 Fixed-effect model – summary statistics.

A B Combined

Y 0.3241 0.6111 0.4581
V 0.0029 0.0033 0.0015
SEY 0.0535 0.0571 0.0390
LLY 0.2193 0.4992 0.3816
ULY 0.4289 0.7230 0.5346
Z 6.0633 10.7013 11.7396
p2 0.0000 0.0000 0.0000

Q 8.4316 4.5429 26.4371
df 4.0000 4.0000 9.0000
p-value 0.0770 0.3375 0.0017
Numerator 4.4316 0.5429 17.4371
C 269.8413 241.6667 583.5871
T 2 0.0164 0.0022 0.0299
I 2 52.5594 11.9506 65.9569
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Figure 19.2 Fixed-effect – subgroup effects.
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Our goal is to compare these two mean effects, and we describe three ways that

we can proceed. These approaches are algebraically equivalent, and (it follows)

yield the same p-value. Our goal in presenting three approaches is to provide insight

into the process.

Comparing A versus B : a Z-test (Method 1)

Since there are only two subgroups here, we can work directly with the mean

difference in effect sizes. In a primary study, if we wanted to compare the means

in two groups we would perform a t-test. In meta-analysis the mean and variance are

based on studies rather than subjects but the logic of the test is the same.

Concretely, let �A and �B be the true effects underlying groups A and B, let MA and

MB be the estimated effects, and let VMA
and VMB

be their variances. If we use Diff

to refer to the difference between the two effects, and elect to subtract the mean of A

from the mean of B,

Diff 5 MB �MA;

the test statistic to compare the two effects is

ZDiff 5
Diff

SEDiff

; ð19:6Þ

where

SEDiff 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VMA
þ VMB

p
: ð19:7Þ

Under the null hypothesis that the true effect size � is the same for both groups,

H0 : �A 5 �B; ð19:8Þ

ZDiff would follow the normal distribution. For a two-tailed test, the p-value is

given by

p 5 2 1� F jZjð Þð Þ½ �; ð19:9Þ

where F(Z) is the standard normal cumulative distribution.

In the running example,

Diff 5 0:6111� 0:3241 5 0:2870;

SEDiff 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0029 þ 0:0033
p

5 0:0782;

ZDiff 5
0:2870

0:0782
5 3:6691;

and

p 5 2 1� F j3:6691jð Þð Þ½ �5 0:0002:
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The two-tailed p-value corresponding to ZDiff 5 3.6691 is 0.0002. This tells us that

the treatment effect is probably not the same for the A studies as for the B studies.

In Excel, the function to compute a 2-tailed p-value for Z is 5(1-(NORMSDIST

(ABS(Z))))*2. Here, 5(1-(NORMSDIST(ABS(3.6691))))*2 will return the value

0.0002.

Comparing A with B : a Q -test based on analysis of variance (Method 2)

In a primary study, the t-test can be used to compare the means in two groups, but to

compare means in more than two groups we use analysis of variance. Concretely,

we partition the total variance (of all subjects about the grand mean) into variance

within groups (of subjects about the means of their respective groups) and variance

between groups (of group means about the grand mean). We then test these various

components of variance for statistical significance, with the last (variance between

groups) addressing the hypothesis that effect size differs as function of group

membership.

In meta-analysis the means are based on studies rather than subjects but the logic

of the test is the same. Specifically, we compute the following quantities (where SS

is the sum of squared deviations).

� QA, the weighted SS of all A studies about the mean of A.

� QB, the weighted SS of all B studies about the mean of B.

� Qwithin, the sum of QA and QB.

� Qbet, the weighted SS of the subgroup means about the grand mean.

� Q, the weighted SS of all effects about the grand mean.

We may write Qwithin 5 QAþQB, to represent the sum of within-group weighted SS,

or more generally, for p subgroups,

Qwithin 5
Xp

j 5 1

Qj: ð19:10Þ

In the running example

Qwithin 5 8:4316þ 4:5429 5 12:9745: ð19:11Þ

The weighted SS are additive, such that Q 5 Qwithin þ Qbet. Therefore, Qbet can be

computed as

Qbet 5 Q� Qwithin: ð19:12Þ

Under the null hypothesis that the effect size � is the same for all groups, 1 to p, Qbet

would be distributed as chi-squared with degrees of freedom equal to p – 1.

In the running example,

Qbet 5 26:4371� 12:9745 5 13:4626: ð19:13Þ
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Each Q statistic is evaluated with respect to the corresponding degrees of freedom.

In the running example (Table 19.3),

� The ‘Total’ line tells us that for the full group of ten studies the variance is

statistically significant (Q 5 26.4371, df 5 9, p 5 0.0017).

� The ‘Within’ line tells us that the variance within groups (averaged across

groups) is not statistically significant (Qwithin 5 12.9745, df 5 8, p 5 0.1127).

� The ‘Between’ line tells us that the difference between groups (the combined

effect for A versus B) is statistically significant (Qbet 5 13.4626, df 5 1,

p 5 0.0002), which means that the effect size is related to the frequency of

tutoring.

� At a finer level of detail, neither the variance within subgroup A (QA 5 8.4316,

df 5 4, p 5 0.0770) nor within subgroup B (QB 5 4.5429, df 5 4, p 5 0.3375) is

statistically significant.

As always, the absence of statistical significance (here, within subgroups) means

only that we cannot rule out the hypothesis that the studies share a common effect

size, and it does not mean that this hypothesis has been proven.

In Excel, the function to compute a p-value for Q is 5CHIDIST(Q,df). For the

test of A versus B, 5CHIDIST(13.4626,1) returns 0.0002.

Comparing A versus B : a Q-test for heterogeneity (Method 3)

The test we just described can be derived in a different way. We can think of

the effect sizes for subgroups A and B as single studies (if we extract the two

subgroup lines and the total line from Figure 19.1 and replace the diamonds with

squares, to represent these as if they were studies, we get Figure 19.3). Then, we

can test these ‘studies’ for heterogeneity, using precisely the same formulas that

we introduced earlier (Chapter 16) to test the dispersion of single studies about the

summary effect.

Concretely, we start with two ‘studies’ with effect sizes of 0.324 and 0.611, and

variance of 0.003 and 0.003. Then, we apply the usual meta-analysis methods to

compute Q (see Table 19.4).

Table 19.3 Fixed-effect model – ANOVA table.

Q df p Formula

A 8.4316 4 0.0770 19.1
B 4.5429 4 0.3375 19.2
Within 12.9745 8 0.1127 19.11
Between 13.4626 1 0.0002 19.13
Total 26.4371 9 0.0017 19.5
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In this example,

M 5
300:833

656:667
5 0:4581; ð19:14Þ

VM 5
1

656:667
5 0:0015; ð19:15Þ

Q 5 151:281� 300:8332

656:667

� �
5 13:4626;

df 5 2� 1 5 1;

and

pðQ 5 13:4626; df 5 1Þ5 0:0002;

where Q represents the weighted sum of squares for studies A and B about the grand

mean. For Q 5 13.4626 and df 5 1, the p-value is 0.0002.

In Excel, the function to compute a p-value for Q is 5CHIDIST(Q,df), and

5CHIDIST(13.4626,1) returns 0.0002.
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Figure 19.3 Fixed-effect model – treating subgroups as studies.

Table 19.4 Fixed-effect model – subgroups as studies.

Study
Effect
size
Y

Variance
Within
VY

Variance
Between

T 2

Variance
Total
V

Weight
W

Calculated quantities

WY WY 2 W 2

A 0.3241 0.0029 0.0000 0.0029 350.000 113.433 36.763 122500.000
B 0.6111 0.0033 0.0000 0.0033 306.667 187.400 114.518 94044.444

656.667 300.833 151.281 216544.444
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Summary

We presented three methods for comparing the effect size across subgroups. One

method was to use a Z-test to compare the two effect sizes directly. Another was to

use a Q-test to partition the variance, and test the between-subgroups portion of the

variance. A third was to use a Q-test to assess the dispersion of the summary effects

about the combined effect. All the methods assess the difference in subgroup

effects relative to the precision of the difference (or the variance across subgroups

effects relative to the variance within subgroups).

As noted earlier, the methods are mathematically equivalent. The two methods that

report Q, report the same value for Q (13.4626). When there is one degree of freedom

(so that we can use either a Z-test or a Q-test) Z is equal to the square root of Q. In our

example, the method that reports Z, reports a value of Z 5 3.6691, which is equal to

the square root of Q. All three methods yield a p-value of 0.0002.

Quantify the magnitude of the difference

The Z-test and the Q-tests address the question of statistical, rather than clinical

significance. In addition to reporting the test of significance, one should

generally report an estimate of the effect size, which in this context is the

difference in mean effect between the two subgroups. For subgroups A and B,

if we elect to subtract the mean of A from the mean of B, the difference is

Diff 5 MB �MA: ð19:16Þ
The 95% confidence interval is estimated by

LLDiff 5 Diff � 1:96� SEDiff ð19:17Þ

and

ULDiff 5 Diff þ 1:96� SEDiff ; ð19:18Þ

where the standard error was defined in (19.7). If we had more than two subgroups,

we could repeat this procedure for all pairs of subgroups. In the running example the

difference in effects (which we have defined as B minus A) and its 95% confidence

interval are estimated as

Diff 5 0:6111� 0:3241 5 0:2870;

SEDiff 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0029þ 0:0033
p

5 0:0782;

LLDiff 5 0:2870� 1:96� 0:0782 5 0:1337;

and

ULDiff 5 0:2870þ 1:96� 0:0782 5 0:4403:
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In words, the true difference between the effect in the subgroup A studies, as

opposed to the subgroup B studies, probably falls in the range of 0.13 to 0.44.

COMPUTATIONAL MODELS

In Part 3 of this volume we discussed the difference between a fixed-effect model

and a random-effects model. Under the fixed-effect model we assume that the true

effect is the same in all studies. By contrast, under the random-effects model we

allow that the true effect may vary from one study to the next. This difference has

implications for the way that weights are assigned to the studies, which affects both

the summary effect and its standard error.

When we introduced these two models we were working with a single set of

studies. Now, we are working with more than one subgroup of studies (in the

running example, A and B) but the same issues apply. Under the fixed-effect

model we assume that all studies in subgroup A share a common effect size and

that all studies in subgroup B share a common effect size. By contrast, under the

random-effects model we allow that there may be some true variation of effects

within the A studies and within the B studies.

When we initially discussed the fixed-effect model we used the example of a

pharmaceutical company that enrolled 1000 patients for a clinical trial and divided

them among ten cohorts of 100 patients each (page 83). These ten cohorts were known

to be identical in all important respects, and so it was reasonable to assume that the true

effect would be the same for all ten studies. When we presented this example we noted

that the conditions described (of all the studies being performed by the same researchers

using the same population and methods) are rare in systematic reviews, and that in most

cases the random-effects model will be more plausible than the fixed-effect.

We can expand the pharmaceutical example to apply to subgroups if we

assume that five of the studies will compare Drug A versus placebo, and the

other five will compare Drug B versus placebo. Within the five Drug A

studies and within the five Drug B studies there should be a single true effect

size, and so in this case it would be correct to use the fixed-effect model

within subgroups. However, the same caveat applies here, in that this kind of

systematic review, where all studies are performed by the same researchers

using the same population and methods, is very rare. In the vast majority of

systematic reviews these conditions will not hold, and a random-effects ana-

lysis would be a better fit for the data.

For example, in the tutoring analysis it seems plausible that the distinction

between the two interventions (one hour versus two hours a week) captures some,

but not all, of the true variation among effects. Within either subgroup of studies

(A or B) there are probably differences from study to study in the motivation of the

students, or the dedication of the teachers, the details of the protocol, or other

factors, such that the true effect differs from study to study. If these differences do
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exist, and can have an impact on the effect size, then the random-effects model is a

better match than the fixed-effect.

When we use the random-effects model, the impact on the summary effect within

subgroups will be the same as it had been when we were working with a single

population. The weights assigned to each study will be more moderate than they had

been under the fixed-effect model (large studies will lose impact while small studies

gain impact). And, the variance of the combined effect will increase.

T 2 should be computed within subgroups

To apply the random-effects model we need to estimate the value of �2, the

variance of true effect sizes across studies. Since �2 is defined as the true variance

in effect size among a set of studies, its value will differ depending on how we

define the set.

If we were to define the set as all studies irrespective of which subgroup they belong

to, with �2 based on the dispersion of all studies from the grand mean, �2 would tend to

be relatively large. By contrast, if we define the set as all studies within a subgroup, with

�2 based on the dispersion of the A studies from the mean of A and of the B studies from

the mean of B, �2 would tend to be relatively small (especially if the A studies and the B

studies do represent distinct clusters, as we have hypothesized).

Since our goal is to estimate the mean and sampling distribution of subgroup A,

and to do the same for subgroup B, it is clearly the variance within subgroups that is

relevant in the present context. Put simply, if some of the variance in effect sizes can

be explained by the type of intervention, then this variance is not a factor in the

sampling distribution of studies within a subgroup (where only one intervention was

used). Therefore, we always estimate �2 within subgroups.

To pool or not to pool

When we estimate �2 within subgroups of studies, the estimate is likely to differ from

one subgroup to the next. In the running example, the estimate of �2 in subgroup

A was 0.016, while in subgroup B it was 0.002. We have the option to pool the within-

group estimates of �2 and apply this common estimate to all studies. Alternatively, we

can apply each subgroup’s estimate of �2 to the studies in that subgroup.

Note. As a shorthand we refer to pooling the estimates of �2. In fact, though, what

we actually pool are Q, df, and C, and then estimate �2 from these pooled values

(see (19.38)).

The decision to pool (or not) depends on the following. If we assume that the true

study-to-study dispersion is the same within all subgroups, then observed differences

in T2 must be due to sampling variation alone. In this case, we should

pool the information to yield a common estimate, and then apply this estimate to all

subgroups. This seems like a plausible expectation in the running example, where the

study-to-study variation in effect size is likely to be similar for subgroups A and B.
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On the other hand, if we anticipate that the true between-studies dispersion may

actually differ from one subgroup to the next, then we would estimate �2 within

subgroups and use a separate estimate of �2 for each subgroup. For example,

suppose that we are assessing an intervention to reduce recidivism among juvenile

delinquents, and comparing the effect in subgroups of studies where the delinquents

did, or did not, have a history of violence. We might expect to see a wider range of

effect sizes in one subgroup than the other.

There is one additional caveat to consider. If we do anticipate that �2 will vary

from one subgroup to the next, so that the correct approach is to use separate

estimates of �2, we still need to be sure that there are enough studies within

each subgroup to yield an acceptably accurate estimate of �2. Generally, if

there are only a few studies within subgroups (say, five or fewer), then the estimates

of �2 within subgroups are likely to be imprecise. In this case, it makes more sense to

use a pooled estimate, since the increased accuracy that we get by pooling

more studies is likely to exceed any real differences between groups in the true

value of �2.

Summary

The logic outlined above is encapsulated in the flowchart shown in Figure 19.4. If

the studies within each subgroup share a common effect size, then we use the fixed-

effect model to assign weights to each study (and �2 is zero). Otherwise, we use the

random-effects model.

Under random effects we always estimate �2within subgroups. If we believe that

the true value of �2 is the same for all subgroups, then the correct procedure is to

pool the estimates obtained within subgroups. If we believe that the true value of �2

varies from one subgroup to the next, the correct procedure is to use a separate

Do we assume that studies
within each subgroup share

a common effect size
Fixed effect Random effects

Do we assume that the true
between-studies variance is the

same for all subgroups

Compute T 2 within subgroups and
use separate estimate of T 2 for each

subgroup (see note in text)

Compute T 2 within subgroups. Pool
these estimates and use same

estimate of T 2  for all subgroups

Yes No

Yes No

Figure 19.4 Flowchart for selecting a computational model.
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estimate for each subgroup. However, if we have only a few studies within

subgroups these estimates may be imprecise and therefore it may be preferable to

pool the estimates.

RANDOM EFFECTS WITH SEPARATE ESTIMATES OF t 2

Here, we proceed through the same set of computations as we did for the fixed-

effect model, but this time using random-effects weights, with a separate estimate

of �2 for each subgroup.

Computing the effects

Figure 19.5 is a forest plot of the studies in subgroups A and B. The studies are

identical to those in the fixed-effect forest plot (Figure 19.2) but the summary

effects, represented by the diamonds, are now based on random-effects weights.

The mean effect size for subgroups A and B are 0.325 and 0.610, with variances of

0.006 and 0.004.

Computations are based on the values in Table 19.5. These values are similar to those

in Table 19.1, except that the variance for each study now includes the within-study

variance and the between-study variance. We did not assume a common value of �2 and

therefore used a separate estimate of �2 for each subgroup. In Figure 19.5 this is

indicated by the symbols at the right, where we have one value for T2
A and another

for T2
B. In Table 19.5, the column labeled T2 shows 0.0164 for the A studies and 0.0022

for the B studies.
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Figure 19.5 Random-effects model (separate estimates of �2 ) – studies and subgroup effects.
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Computations (random effects, separate estimates of t2) for the A studies

MA
�5

50:787

156:512
5 0:3245;

VMA
�5

1

156:512
5 0:0064;

SEMA
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0064
p

5 0:0799;

LLMA
�5 0:3245� 1:96� 0:0799 5 0:1678;

ULMA
�5 0:3245þ 1:96� 0:0799 5 0:4812;

ZA
�5

0:3245

0:0799
5 4:0595;

pðZA
�Þ < 0:0001;

and

QA
�5 19:868� 50:7872

156:512

� �
5 3:3882: ð19:19Þ

Table 19.5 Random-effects model (separate estimates of �2 ) – computations.

Study

Effect
size

Variance
Within

Variance
Between

Variance
Total Weight

W

Calculated quantities

Y VY T2 V WY WY 2 W 2

A

Thornhill 0.110 0.0100 0.0164 0.0264 37.846 4.163 0.458 1432.308
Kendall 0.224 0.0300 0.0164 0.0464 21.541 4.825 1.081 464.017
Vandamm 0.338 0.0200 0.0164 0.0364 27.455 9.280 3.137 753.788
Leonard 0.451 0.0150 0.0164 0.0314 31.824 14.353 6.473 1012.757
Professor 0.480 0.0100 0.0164 0.0264 37.846 18.166 8.720 1432.308

Sum A 156.512 50.787 19.868 5095.179

B

Jefferies 0.440 0.0150 0.0022 0.0172 57.983 25.512 11.225 3362.002
Fremont 0.492 0.0200 0.0022 0.0222 44.951 22.116 10.881 2020.582
Doyle 0.651 0.0150 0.0022 0.0172 57.983 37.747 24.573 3362.002
Stella 0.710 0.0250 0.0022 0.0272 36.702 26.058 18.501 1347.034
Thorwald 0.740 0.0120 0.0022 0.0142 70.193 51.943 38.438 4927.012

Sum B 267.811 163.376 103.619 15018.633

Sum 424.323 214.163 123.487 20113.812
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Note. The Q* statistic computed here, using random-effects weights, is used only

for the analysis of variance, to partition Q* into its various components. Therefore,

we do not show a p-value for Q*. Rather, the Q statistic computed using fixed-effect

weights (Table 19.2) is the one that reflects the between-studies dispersion, pro-

vides a test of homogeneity for the studies within subgroup A, and is used to

estimate T2.

Computations (random effects, separate estimates of t2) for the B studies

MB
�5

163:376

267:811
5 0:6100;

VMB
�5

1

267:811
5 0:0037;

SEMB
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0037
p

5 0:0611;

LLMB
�5 0:6100� 1:96� 0:0611 5 0:4903;

ULMB
�5 0:6100þ 1:96� 0:0611 5 0:7298;

ZB
�5

0:6100

0:0611
5 9:9833;

pðZB
�Þ < 0:0001;

and

QB
�5 103:619� 163:3762

267:811

� �
5 3:9523: ð19:20Þ

Computations (random effects, separate estimates of t2) for all ten studies
The statistics here are computed using the same value of T2 as was used within

groups (in this case, not pooled).

M�5
214:163

424:323
5 0:5047; ð19:21Þ

VM
�5

1

424:323
5 0:0024; ð19:22Þ

SEM�5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0024
p

5 0:0485;

LLM�5 0:5047� 1:96� 0:0485 5 0:4096;

ULM�5 0:5047þ 1:96� 0:0485 5 0:5999;
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Z�5
0:5047

0:0485
5 10:3967;

pðZ�Þ < 0:0001;
and

Q�5 123:487� 214:1632

424:323

� �
5 15:3952: ð19:23Þ

Statistics (random-effects) are summarized in Table 19.6.

Comparing the effects

If we return to Figure 19.5 and excerpt the diamonds for the two subgroups we get

Figure 19.6.

The mean effect size for subgroups A and B are 0.325 and 0.610, with variances of

0.006 and 0.004.

Our goal is to compare these two mean effects, and there are several ways that we can

proceed. These approaches are algebraically equivalent, and (it follows) yield the same

p-value. Our goal in presenting several approaches is to provide insight into the process.

Comparing A versus B : a Z-test (Method 1)

We can use a simple Z-test to compare the mean effect for subgroups A versus B.

The formulas are identical to those used earlier, but we change two symbols to

Table 19.6 Random-effects model (separate estimates of �2 ) – summary statistics.

A B Combined

Y 0.3245 0.6100 0.5047
V 0.0064 0.0037 0.0024
SEY 0.0799 0.0611 0.0485
LLY 0.1678 0.4903 0.4096
ULY 0.4812 0.7298 0.5999
Z 4.0595 9.9833 10.3967
p2 0.0000 0.0000 0.0000
Q 3.3882 3.9523 15.3952

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Study Varianceg

B 0.0040.610

A 0.0060.325

Hedges’ G and 95% confidence interval

Figure 19.6 Random-effects model (separate estimates of �2 ) – subgroup effects.
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reflect the random-effects model. First, we use a (*) to indicate that the statistics are

based on random-effects weights rather than fixed-effect weights. Second, the null

hypothesis is framed as �A 5�B, reflecting the fact that these are mean values,

rather than �A 5 �B, which we used to refer to common values when we were

working with the fixed-effect model.

Let �A and �B be the true mean effects underlying subgroups A and B, let M*
A and

M*
B be the estimated effects, and letVMA

� andVMB

� be their variances. If we use Diff* to

refer to the difference between the two effects and elect to subtract the mean of A

from the mean of B,

Diff �5 M�B �M�A: ð19:24Þ

The test statistic to compare the two effects is

Z�Diff 5
Diff �

SEDiff �
; ð19:25Þ

where

SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VMA
� þ VMB

:
p

� ð19:26Þ

Under the null hypothesis that the true mean effect size � is the same for both

groups,

H�0 : ��A 5��B; ð19:27Þ

Z*
Diff would follow the normal distribution. For a two-tailed test the p-value is given

by

p�5 2 1� F jZ�Diff jÞ
� �� i

;
h

ð19:28Þ

where F(Z) is the standard normal cumulative distribution.

In the running example

Diff �5 0:6100� 0:3245 5 0:2856;

SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0064 þ 0:0037
p

5 0:1006;

and

ZDiff � 5
0:2856

0:1006
5 2:8381:

The two-tailed p-value corresponding to Z*
Diff 5 2.8381 is 0.0045. This tells us

that the mean treatment effect is probably not the same for the A studies as for

the B studies. In Excel, the function to compute a 2-tailed p-value for Z is 5

(1-(NORMSDIST(ABS(Z))))*2. Here, 5(1-(NORMSDIST(ABS(2.8381))))*2

will return the value 0.0045.
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Comparing A with B : a Q -test based on analysis of variance (Method 2)
We use the same formulas as we did for method 2 under the fixed-effect model, but now

apply random-effects weights. Note that this approach only works if we use the same

weights to compute the overall effect as we do to compute the effects within groups. In

Table 19.5, studies from subgroup A use the T2 value of 0.0164 both for computing the

subgroup mean and for computing the overall mean. Similarly, studies from subgroup B

use the T2 value of 0.0022 both for computing the subgroup mean and for computing the

overall mean.

We compute the following quantities (where SS is the sum of squared deviations).

� Q*
A, the weighted SS of all A studies about the mean of A.

� Q*
B, the weighted SS of all B studies about the mean of B.

� Q*
within, the sum of Q*

A and Q*
B.

� Q*
bet, the weighted SS of the subgroup means about the grand mean.

� Q*, the weighted SS of all effects about the grand mean.

We may write Q*
within 5 Q*

A þ Q*
B, to represent the sum of within-group weighted

SS, or more generally, for p subgroups,

Q�within 5
Xp

j 5 1

Q�j : ð19:29Þ

In the running example

Q�within 5 3:3882þ 3:9523 5 7:3406: ð19:30Þ

The weighted SS are additive, such that Q* 5 Q*
withinþ Q*

bet. Therefore, Q*
bet can be

computed as

Q�bet 5 Q��Q�within: ð19:31Þ

Under the null hypothesis that the effect sizes � are the same for all groups, 1 to p,

Q*
bet would be distributed as chi-squared with degrees of freedom equal to p – 1.

In the running example

Q�bet 5 15:3952� 7:3406 5 8:0547: ð19:32Þ

Results are summarized in Table 19.7. Note that the only Q statistic that we interpret

here is the one between groups. In the running example, the Between line tells us

Table 19.7 Random-effects model (separate estimates of �2 ) – ANOVA table.

Q* df p Formula

A 3.3882 19.19
B 3.9523 19.20
Within 7.3406 19.30
Between 8.0547 1.0 0.0045 19.32
Total 15.3952 19.23
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that the difference between groups (the combined effect for A versus B) is statisti-

cally significant (Q*
bet 5 8.0547, df 5 1, p 5 0.0045), which means that the effect

size is related to the frequency of tutoring. In Excel, the function to compute a p-

value for Q is 5 CHIDIST(Q,df). For the test of A versus B, 5CHIDIST(8.0547,1)

returns 0.0045.

To address the statistical significance of the total variance or the variance

within groups, we use the statistics reported using the fixed-effect weights (see

Table 19.3) rather than using Q* (total), Q*
A, Q*

B or Q*
within.

Comparing A versus B: a Q -test for heterogeneity (Method 3)
Finally, we could treat the subgroups as if they were studies and perform a test for

heterogeneity across studies. If we extract the two subgroup lines and the total line

from Figure 19.5 and replace the diamonds with squares we get Figure 19.7.

Concretely, we start with two studies with effect sizes of 0.324 and 0.610, and

variances of 0.006 and 0.004. Then, we apply the usual meta-analysis methods to

compute Q. Concretely, using the values in Table 19.8, and applying (11.2) and

subsequent formulas, we compute

M�5
214:163

424:323
5 0:5047; ð19:33Þ

and

VM
�5

1

424:323
5 0:0024: ð19:34Þ

Q 5 116:146� 214:1632

424:323

� �
5 8:0547;

df 5 2� 1 5 1;
and

pðQ 5 8:0547; df 5 1Þ5 0:0045;

where Q represents the weighted sum of squares for Studies A and B about the grand

mean. For Q 5 8.0547 and df 5 1, the p-value is 0.0045.

In Excel, the function to compute a p-value for Q is 5CHIDIST(Q,df). For the

test of A versus B, 5CHIDIST(8.0547,1) returns 0.0045.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined 0.0020.505

Study Varianceg

B 0.0040.610

A 0.0060.325

Hedges’ g and 95% confidence interval

Figure 19.7 Random-effects model (separate estimates of �2 ) – treating subgroups as studies.
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Quantify the magnitude of the difference
The difference and confidence interval are given by (19.17) and (19.18):

Diff �5 0:6100� 0:3245 5 0:2856;

SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0064 þ 0:0037
p

5 0:1006;

LLDiff � 5 0:2856� 1:96� 0:1006 5 0:0883;

and
ULDiff � 5 0:2856þ 1:96� 0:1006 5 0:4828:

In words, the true difference between the effect in the A studies, as opposed to the B

studies, probably falls in the range of 0.09 to 0.48.

RANDOM EFFECTS WITH POOLED ESTIMATE OF t 2

Here, we show the computation of summary effects within subgroups, using a

random-effects model with a pooled estimate of � 2, which we refer to as � 2
within.

We illustrate the procedure in Figure 19.8. Note the common value of � 2
within is

assumed to apply to both subgroups.

Formula for estimating a pooled T 2

To estimate the pooled �2, proceed as follows. Recall (12.2) to (12.5) that to

estimate �2 for a single collection of studies we use

T2 5
Q� df

C
; ð19:35Þ

where
df 5 k � 1; ð19:36Þ

where k is the number of studies, and

C 5
X

Wi �
X

W2
iX

Wi

: ð19:37Þ

Table 19.8 Random-effects model (separate estimates of �2 ) – subgroups as studies.

Study
Effect
size

Variance
Within

Variance
Between

Variance
Total Weight

W

Calculated quantities

Y VY T 2 V WY WY 2 W 2

A 0.3245 0.0064 0.0000 0.0064 156.512 50.787 16.480 24495.944
B 0.6100 0.0037 0.0000 0.0037 267.811 163.376 99.666 71722.774

424.323 214.163 116.146 96218.718
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In these equations, Q – df is the excess (observed minus expected) sum of squared

deviations from the weighted mean, and C is a scaling factor.

Similarly, to yield a pooled estimate of �2 we sum each element (Q, df, and C)

across subgroups and then perform the same computation. Concretely,

T2
within 5

Xp

j 5 1

Qj �
Xp

j 5 1

df j

Xp

j 5 1

Cj

: ð19:38Þ

While the true value of � 2
within cannot be less than zero (a variance cannot be

negative), this method of estimating � 2
within can yield a negative value due to

sampling issues (when the observed dispersion is less than we would expect by

chance). In this case, the estimate T 2
within is set to zero.

Computing the effects

Subgroup A yielded an estimate of 0.0164 while subgroup B yielded an estimate of

0.0122, represented in Figure 19.8 as T 2
A and T 2

B. We will pool these two estimates to

yield a pooled value, represented as T 2
within, of 0.0097 (see (19.39)). This is the value

used to assign weights in Table 19.10.

In the running example, the values within each group were computed earlier for

A and B. Table 19.9 shows the values needed to calculate a pooled estimate T2
within

for the running example.
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Figure 19.8 Random-effects model (pooled estimate of �2 ) – studies and subgroup effects.
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Then,

T2
within 5

12:9745� 8

511:508
5 0:00974: ð19:39Þ

Computations below are based on the values in Table 19.10. These are similar to Table

19.5, except that we now assume that all groups have the same �2, and use a common

estimate. In Table 19.10 the same estimate of �2 (0.0097) is applied to all ten studies.

Computations (random effects, pooled estimate of t2) for the A studies

MA
�5

65:161

200:652
5 0:3247;

VMA
�5

1

200:652
5 0:0050;

SEMA
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0050
p

5 0:0706;

Table 19.9 Statistics for computing a pooled estimate of �2.

Group Q df C

A 8.4316 4 269.8413
B 4.5429 4 241.6667
Sum 12.9745 8 511.5079

Table 19.10 Random-effects model (pooled estimate of �2) – computations.

Study
Effect
size

Variance
Within

Variance
Between

Variance
Total Weight

W

Calculated quantities

Y VY T 2 V WY WY 2 W 2

A

Thornhill 0.110 0.0100 0.0097 0.0197 50.697 5.577 0.613 2570.150
Kendall 0.224 0.0300 0.0097 0.0397 25.173 5.639 1.263 633.678
Vandamm 0.338 0.0200 0.0097 0.0297 33.642 11.371 3.843 1131.752
Leonard 0.451 0.0150 0.0097 0.0247 40.445 18.241 8.226 1635.767
Professor 0.480 0.0100 0.0097 0.0197 50.697 24.334 11.681 2570.150

Sum A 200.652 65.161 25.627 8541.498

B

Jefferies 0.440 0.0150 0.0097 0.0247 40.445 17.796 7.830 1635.767
Fremont 0.492 0.0200 0.0097 0.0297 33.642 16.552 8.143 1131.752
Doyle 0.651 0.0150 0.0097 0.0247 40.445 26.329 17.140 1635.767
Stella 0.710 0.0250 0.0097 0.0347 28.798 20.446 14.517 829.299
Thorwald 0.740 0.0120 0.0097 0.0217 46.030 34.062 25.206 2118.721

Sum B 189.358 115.185 72.837 7351.306

Sum 390.010 180.346 98.463 15892.804
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LLMA

�5 0:3247� 1:96� 0:0706 5 0:1864;

ULMA
�5 0:3247þ 1:96� 0:0706 5 0:4631;

ZA
�5

0:3247

0:0706
5 4:6601;

pðZA
�Þ < 0:0001;

and

QA
�5 25:627� 65:1612

200:652

� �
5 4:4660: ð19:40Þ

Note. The Q* statistic computed here, using random-effects weights, is used

only for the analysis of variance, to partition Q* into its various components.

Therefore, we do not show a p-value for Q*. Rather, the Q statistic computed

using fixed-effect weights (above) is the one that reflects the between-studies

dispersion, provides a test of homogeneity for the studies within subgroup A, and

is used to estimate � 2
within.

Computations (random effects, pooled estimate of t2) for the B studies

MB
�5

115:185

189:358
5 0:6083;

VMB
�5

1

189:358
5 0:0053;

SEMB
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0053
p

5 0:0727;

LLMB
�5 0:6083� 1:96� 0:0727 5 0:4659;

ULMB
�5 0:6083þ 1:96� 0:0727 5 0:7507;

ZB
�5

0:6083

0:0727
5 8:3705;

pðZB
�Þ < 0:0001;

and

QB
�5 72:837� 115:1852

189:358

� �
5 2:7706: ð19:41Þ
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Computations (random effects, pooled estimate of t2) for all ten studies
The statistics here are computed using the same value of T2 as was used within

groups (in this case, the pooled estimate, T 2
within).

M�5
180:346

390:010
5 0:4624; ð19:42Þ

VM
�5

1

390:010
5 0:0026; ð19:43Þ

SEM
�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0026
p

5 0:0506;

LLM
�5 0:4624� 1:96� 0:0506 5 0:3632;

ULM
�5 0:4624þ1:96� 0:0506 5 0:5617;

Z�5
0:4624

0:0506
5 9:1321;

pðZ�Þ < 0:0001;
and

Q�5 98:463� 180:3462

390:010

� �
5 15:0690: ð19:44Þ

The statistics computed above are summarized in Table 19.11.

Table 19.11 Random-effects model (pooled estimate of �2 ) –
summary statistics.

A B Combined

Y 0.3247 0.6083 0.4624
V 0.0050 0.0053 0.0026
SEY 0.0706 0.0727 0.0506
LLY 0.1864 0.4659 0.3632
ULY 0.4631 0.7507 0.5617
Z 4.6001 8.3705 9.1321
p2 0.0000 0.0000 0.0000
Q 4.4660 2.7706 15.0690
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Comparing the effects

If we return to Figure 19.8 and excerpt the diamonds for the two subgroups we get

Figure 19.9. The mean effect size for subgroups A and B are 0.325 and 0.608, with

variances of 0.005 and 0.005.

Our goal is to compare these two mean effects, and there are several ways that we

can proceed. These approaches are algebraically equivalent, and (it follows) yield

the same p-value.

Comparing A versus B : a Z -test (Method 1)

We can use a Z-test to compare the mean effect for subgroups A versus B. The null

hypothesis and formulas are the same as those for the prior case (where we did not

assume a common value for �2). If we elect to subtract the mean of A from the mean

of B,

Diff �5 M�B �M�A; ð19:45Þ

the test statistic to compare the two effects is

Z�Diff 5
Diff �

SEDiff �
; ð19:46Þ

where

SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VMA
� þ VMB

�
p

: ð19:47Þ

Under the null hypothesis that the true mean effect size �i is the same for both groups,

H0 : �A 5�B; ð19:48Þ

Z*
Diff would follow the normal distribution. For a two-tailed test the p-value is given by

p�5 2 1� F jZ�Diff j
� �� �h i

; ð19:49Þ

where F(Z) is the standard normal cumulative distribution.

In the running example

Diff �5 0:6083� 0:3247 5 0:2835;

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Study Varianceg

B 0.0050.608

A 0.0050.325

Hedges’ g and 95% confidence interval

Figure 19.9 Random-effects model (pooled estimate of �2 ) – subgroup effects.
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SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0050 þ 0:0053
p

5 0:1013;

and

Z�Diff 5
0:2835

0:1013
5 2:7986:

The two-tailed p-value corresponding to Z*
Diff 5 2.7986 is 0.0051. This tells us that the

mean effect is probably not the same for the A studies as for the B studies. In Excel, the

function to compute a 2-tailed p-value for Z is 5(1-(NORMSDIST(ABS(Z))))*2.

Here, 5(1-(NORMSDIST(ABS(2.7986))))*2 will return the value 0.0045.

Comparing A with B: a Q -test based on analysis of variance (Method 2)
Again, we apply the same formulas as we did for the prior case, but this time using

the random-effects weights based on a pooled estimate of �2. Note that this

approach only works if we use the same weights to compute the overall effect as

we do to compute the effects within groups. In Table 19.10 we used a T2 value of

0.0097 for all ten studies, and this is the value used to sum within subgroups and also

to sum across subgroups.

We compute the following quantities (where SS is the sum of squared deviations).

� Q*
A, the weighted SS of all A studies about the mean of A.

� Q*
B, the weighted SS of all B studies about the mean of B.

� Q*
within, the sum of Q*

A and Q*
B.

� Q*
bet, the weighted SS of the subgroup means about the grand mean.

� Q*
, the weighted SS of all effects about the grand mean.

We may write Q*
within 5 Q*

AþQ*
B, to represent the sum of within-group weighted SS,

or more generally, for p subgroups,

Q�within 5
Xp

j 5 1

Q�j : ð19:50Þ

In the running example,

Q�within 5 4:4660þ 2:7706 5 7:2366: ð19:51Þ

The weighted SS are additive, such that Q* 5 Q*
withinþQ*

bet. Therefore, Q*
bet can be

computed as

Q�bet 5 Q��Q�within: ð19:52Þ

Under the null hypothesis that the true man effect size � is the same for all groups, 1

to p, Q*
bet would be distributed as chi-squared with degrees of freedom equal to p – 1.

In the running example

Q�bet 5 15:0690� 7:2366 5 7:8324: ð19:53Þ
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The only Q statistic that we interpret here is the one between groups. In the running

example, the Between line tells us that the difference between groups (the combined

effect for A versus B) is statistically significant (Q*
bet 5 7.8324 df 5 1, p 5 0.0051),

which means that the effect size is related to the frequency of tutoring. In Excel, the

function to compute a p-value for Q is 5CHIDIST(Q,df). For the test of A versus B,

5CHIDIST(7.8324,1) returns 0.0051.

To address the statistical significance of the total variance or the variance within

groups, we use the statistics reported using the fixed-effect weights (Table 19.3)

rather than using Q*
total, Q*

A, Q*
B or Q*

within.

Comparing A versus B : a Q-test for heterogeneity (Method 3)

Finally, we could treat the subgroups as if they were studies and perform a test

for heterogeneity across studies. If we extract the two subgroup lines and the total line

from Figure 19.8 and replace the diamonds with squares we obtain Figure 19.10.

Concretely, we start with two studies with effect sizes of 0.325 and 0.608, and

variances of 0.005 and 0.005. Then, we apply the usual meta-analysis methods to

compute Q. Concretely, using the values in Table 19.13, and applying (11.2) and

subsequent formulas, we compute

M�5
180:346

390:010
5 0:4624; ð19:54Þ

VM
�5

1

390:010
5 0:0026; ð19:55Þ

Q 5 91:227� 180:3462

390:010

� �
5 7:8324;

df 5 2� 1 5 1;

and

pðQ 5 7:8324; df 5 1Þ5 0:0051:

Table 19.12 Random-effects model (pooled estimate of �2 ) –
ANOVA table.

Q* df p Formula

A 4.4660 19.40
B 2.7706 19.41
Within 7.2366 19.51
Between 7.8324 1 0.0051 19.53
Total 15.0690 19.44
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where Q represents the weighted sum of squares for Studies A and B about the grand

mean. For Q 5 7.8324 and df 5 1, the p-value is 0.0051.

In Excel, the function to compute a p-value for Q is 5CHIDIST(Q,df). For

example, 5CHIDIST(7.8324,1) returns 0.0051.

Quantify the magnitude of the difference

The difference and confidence interval are given by (19.17) and (19.18):

Diff �5 0:6083� 0:3247 5 0:2835;

SEDiff � 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0050þ 0:0053
p

5 0:1013;

LLDiff � 5 0:2835� 1:96� 0:1013 5 0:0850;

and
ULDiff � 5 0:2835þ 1:96� 0:1013 5 0:4821:

In words, the true difference between the effect in the A studies, as opposed to the B

studies, probably falls in the range of 0.09 to 0.48.

THE PROPORTION OF VARIANCE EXPLAINED

In primary studies, a common approach to describing the impact of a covariate is to

report the proportion of variance explained by that covariate. That index, R2, is

defined as the ratio of explained variance to total variance,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined 0.0030.462

Study Varianceg

B 0.0050.608

A 0.0050.325

Hedges’ g and 95% confidence interval

Figure 19.10 Random-effects model (pooled estimate of �2 ) – treating subgroups as studies.

Table 19.13 Random-effects model (pooled estimate of �2 ) – subgroups as studies.

Study
Effect
size

Variance
Within

Variance
Between

Variance
Total Weight

W

Calculated quantities

Y VY T2 V WY WY2 W 2

A 0.3247 0.0050 0.0000 0.0050 200.652 65.161 21.161 40261.386
B 0.6083 0.0053 0.0000 0.0053 189.358 115.185 70.066 35856.405

390.010 180.346 91.227 76117.791
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R2 5
�2

explained

�2
total

ð19:56Þ

or, equivalently,

R2 5 1�
�2

unexplained

�2
total

 !
: ð19:57Þ

This index is intuitive because it can be interpreted as a ratio, with a range of 0 to 1

(or expressed as a percentage in the range of 0% to 100%). Many researchers are

familiar with this index, and have a sense of what proportion of variance is likely to

be explained by different kinds of covariates or interventions.

This index cannot be applied directly to meta-analysis for the following reason. In a

primary study, a covariate that explains all of the variation in the dependent variable will

reduce the error to zero (and R2, the proportion of variance explained, would reach 100%).

For example, Figure 19.11 depicts a primary study with 10 participants. All those

in group A have the same score (0.3) and all those in group B have the same score

(0.7). Since the variance within each subgroup is 0.0, group membership explains

100% of the original variance, and R2 is 100%. In a real study, of course, there

would be some variance within groups and R2 would be less than 100%, but the fact

that R2 can potentially reach 100% is part of what makes this index intuitive.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Thornhill

Kendall

Leonard

Vandamm

Professor

Jeffries

Fremont

Stella

Doyle

Thorwald

A

B

Combined

0.3

0.3

0.3

0.3

0.3

0.7

0.7

0.7

0.7

0.7

0.5

Subject Score

B 0.7

A 0.3

Hedges’ g and 95% confidence interval

Figure 19.11 A primary study showing subjects within groups.
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By contrast, consider what happens in a meta-analysis if we have two subgroups

of studies. We assume that there are five studies in each subgroup, with a true

summary effect (say, a standardized mean difference) of 0.30 for each study in

subgroup A and of 0.70 for each study in subgroup B. However, while the true effect

is identical for each study within its subgroup, the observed effects will differ from

each other because of random error.

Thus, the variance within groups, while smaller than the variance between

groups, can never approach zero. If the within-study error is a substantial portion

of the total variance observed (say, 75%), then the upper limit of R2 would be only

25%. As such, two important qualities of the index (the fact that it has a natural scale

of 0% to 100% and the fact that it has the same range across studies) would no

longer apply.

Since the problem with using R2 is the fact that study-level covariates in a

meta-analysis can address only the true variance �2 (and not the within-study variance

v), the logical solution is to redefine R2 (or to define a new index) that is based solely

on the true variance. Rather than defining R2 as the proportion of total variance

explained by the covariates, we will define it as the proportion of true variance

explained by the covariates. Since the true variance is estimated as T2, this gives us

R2 5
T2

explained

T2
total

; ð19:58Þ

or

R2 5 1�
T2

unexplained

T2
total

 !
: ð19:59Þ

In the context of subgroups, the numerator in (19.59) is the between-studies variance

within subgroups, and the denominator is the total between-studies variance (within-

subgroups plus between-subgroups). Therefore, the equation can be written

R2 5 1� T2
within

T2
total

� �
: ð19:60Þ

In the running example, T2 for the full set of studies was 0.0299 (see page 155), and T2

computed by working within subgroups and then pooling across subgroups was 0.0097

(see page 173). This gives us

R2 5 1� 0:0097

0:0299

� �
5 0:6745: ð19:61Þ

In Figure 19.12 we have superimposed a normal curve for the distribution of true

effects within each subgroup of studies, and also across all ten studies. The

relatively narrow dispersion within groups is based on the T2 of 0.0097, while the

relatively wide dispersion across groups is based on the T2 of 0.0299, and R2

captures this change.
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The same idea is shown from another perspective in Figure 19.13. On the top line,

34% of the total variance was within studies and 66% was between studies (which is

also the definition of I2). The within-studies variance cannot be explained by study-

level covariates, and so is removed from the equation and we focus on the shaded

part. On the bottom line, the type of intervention is able to explain 67% of the

relevant variance, leaving 33% unexplained. Critically, the 67% and 33% sum to

100%, since we are concerned only with the variance between studies.

Note 1. While the R2 index has a range of 0 to 1 (0% to 100%) in the population, it

is possible for sampling error to yield an observed value of R2 that falls outside of

this range. In that case, the value is set to either 0 (0%) or 1 (100%).

Note 2. The R2 index only makes sense if we are using a random-effects

model, which allows us to think about explaining some of the between-studies

variance. Under the fixed-effect model the between-studies variance is set at

zero and cannot be changed. Also, the computational model proposed here for

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A

B
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0.224

0.451
0.338

0.480
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0.492
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0.740

0.462

Varianceg
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Hedges’ g and 95% confidence interval
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Figure 19.12 Random-effects model – variance within and between subgroups.

Within studies 34% Between-studies (I 2) 66%

Within groups
33%

Between groups (R 2) 67%

Figure 19.13 Proportion of variance explained by subgroup membership.
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estimating R2 only works for the case where we assume that �2 is the same for all

subgroups.

MIXED-EFFECTS MODEL

In this volume we have been using the term fixed effect to mean that the effect is identical

(fixed) across all relevant studies (within the full population, or within a subgroup).

In fact the use of the term fixed effect in connection with meta-analysis is at odds

with the usual meaning of fixed effects in statistics. A more suitable term for the

fixed-effect meta-analysis might be a common-effect meta-analysis. The term fixed

effects is traditionally used in another context with a different meaning. Concretely,

we can talk about the subgroups as being fixed in the sense of fixed rather than

random. For example, if we want to compare the treatment effect for a subgroup of

studies that enrolled only males versus a subgroup of studies that enrolled only

females, then we would assume that the subgroups are fixed in the sense that anyone

who wanted to perform this analysis would need to use these same two subgroups

(male and female). By contrast, if we have subgrouping of studies by country, then

we might prefer to treat the subgroups as random. A random-effects assumption

across subgroups of studies in the US, UK, Japan, Australia and Sweden would

allow us to infer what the effect might be in a study in Israel, by assuming it comes

from the same random-effects distribution. In this chapter we assume that when we

are interested in comparing subgroups we make an assumption of the first type,

which means that anyone who performs this comparison must use the same set of

subgroups.

We mention this here for two reasons. One is to alert the reader that in the event that

the subgroups have been sampled at random from a larger pool (as in the example of

countries), thenweareable to take thisadditional sourceofvariability intoaccount.The

mechanism for doing so is beyond the scope of an introductory book.

The other reason is to explain the meaning of the term mixed model, which is

sometimes used to describe subgroup analyses. As explained in this chapter the

summary effect within subgroups can be computed using either a fixed-effect model

or a random-effects model. As outlined immediately above, the difference across

subgroups can be assessed using either a fixed-effects model or a random-effects

model (although the meaning of fixed is different here). This leads to the following

nomenclature.

If we use a fixed-effect model within subgroups and also across subgroups,

the analysis is called a fixed-effects analysis. If we use a random-effects

model within subgroups and a fixed-effect model across subgroups (the

approach that we generally advocate), the model is called a mixed-effects

model. We have the further possibility of assuming random effects both within

and across subgroups; such a model is called a random-effects (or fully

random-effects) model.
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OBTAINING AN OVERALL EFFECT IN THE PRESENCE OF SUBGROUPS

In the tables and forest plots presented in this chapter we presented a summary

effect for each subgroup and also for the total population. Since our primary concern

has been with looking at difference between subgroups we paid little attention to the

value for the total population. Here, we consider if that value should be reported at

all, and if so, how it should be computed.

Should we report a summary effect across all subgroups?

The question of whether or not we should report a summary effect across all

subgroups depends on our goals and also on the nature of the data.

Suppose the primary goal of the analysis is to see if a treatment is more effective

among acute patients than among chronic patients, and it emerges that the treatment

is very effective in one group but harmful in the other. In this case, the take-home

message should be that we need to look at each group separately. To report that the

treatment is moderately effective (on average) would be a bad idea since this is true

for neither group and misrepresents the core finding. In this case, it would be better

to report the effect for the separate subgroups only.

By contrast, if it turns out that the treatment is equally effective (or nearly so)

in both subgroups, then it might be helpful to report a combined effect to serve

as a summary. This would probably be the case also if there are minor

differences among groups, but the substantive implication of the treatment

(or the relationship) is the same for all groups. This is especially true if there are

many subgroups, and the reader will be looking for a single number that is easy to

recall.

If we do decide to report a combined effect across subgroups, we need to be clear

about what this value represents, since this determines how it will be computed. The

basic options are explained below.

Option 1. Combine subgroup means and ignore between-subgroup variance

One option is to compute the weighted mean of the subgroup means. In other words,

we treat each subgroup as a study and perform a fixed-effect analysis using the

mean effect and variance for each subgroup. In this chapter, we showed three

versions of this approach.

These computations were shown for the fixed-effect model in (19.14) and (19.15)

and where we computed the weighted mean of the two subgroups. Note that we

would get the identical values if we worked with the original ten studies and

weighted each by its fixed-effect weight (see (19.3) and (19.4)).

These computations were shown for the random-effects model with separate

estimates of �2 in (19.33) and (19.34), where we computed the weighted mean of

the two subgroups. Note that we would get the identical values if we worked with
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the original ten studies and weighted each by its random-effects weight, with a

separate estimate of �2 for each subgroup (see (19.21) and (19.22)).

These computations were shown for the random-effects model with a pooled

estimate of �2 in (19.54) and (19.55), where we computed the weighted mean of the

two subgroups. Note that we would get the identical values if we worked with the

original ten studies and weighted each by its random-effects weight, with a pooled

estimate of �2 (see (19.42) and (19.43)).

In all three cases, the combined effect refers to no actual population but is rather

the average of two different populations. If the subgroups were male and female

then the combined effect is the expected effect in a population that included both

males and females (in the same proportions as in the subgroups). As always, the

standard error of the mean speaks to the precision of the mean, and not to the

dispersion of effects across subgroups (which is treated as zero).

Option 2. Combine subgroup means, and model the between-subgroup variance

A second option is to assume a random-effects model across subgroups. In other

words, all the formulas and concepts discussed in Chapter 12 are applied here,

except that the unit of analysis is the subgroup rather than the study. This would

make sense if the subgroups have been sampled at random from a larger group of

relevant subgroups. For example, we have the mean effect of a treatment in the US

and in Australia, but we want to estimate what the mean effect of that treatment

would be across all relevant countries.

In this case we need to address precisely the same kinds of issues we

addressed when discussing heterogeneity in Chapter 12. First, we compute a

measure of between-subgroups dispersion, T2
bet. Then, we compute a weighted

mean of the subgroups, where the weights are based on the within-subgroup

error and the between-subgroups variance. To the extent that the subgroup

means differ from each other, the standard error of the combined effect will be

increased (but this additional error will be diminished as additional subgroups

are added).

We can also focus on the dispersion itself (as in Chapters 16 and 17). For example,

we can use the estimate of �2
bet to build a prediction interval that gives us the expected

range of effect sizes for the next country (in our example) selected at random.

Option 3. Perform a separate random-effects analysis on the full set of studies.

If we want to report a combined effect across subgroups, then a third option is

simply to perform a separate random-effects meta-analysis including all of the

studies, and ignoring subgroup membership. Rather than estimate �2 within

subgroups (as we did before) we estimate it across all studies, and so it will tend

to be larger.
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Comparing the options

When our primary goal is to assess differences among subgroups, and use an

analysis of variance table as part of the process, the combined effects across

subgroups are computed using option 1. This yields a set of internally consistent

data.

If we really care about the combined effect across subgroups then options 2 and 3

are the more logical choices. If the subgroups really have been selected at random

from a larger set, then option 2 allows us to model the different sources of error

separately and obtain a better estimate of the true confidence interval for the

combined effect (as well as discuss prediction intervals for a future subgroup),

and is probably the better choice. This assumes, of course, that we have sufficient

information to obtain a reasonably precise estimate of the variance among sub-

groups. By contrast, if the subgrouping is not of major importance, or if multiple

different subgroupings of the studies are being considered, then option 3 is the more

logical choice.

SUMMARY POINTS

� Just as we can use t-tests or analysis of variance in primary studies to assess

the relationship between group membership and outcome, we can use analogs

of these procedures in meta-analysis to assess the relationship between

subgroup membership and effect size.

� We presented three methods that can be used to compare the mean effect

across subgroups. To compare the mean effect in two groups we can use a

Z-test. To compare the mean effect in two or more groups we can use analysis

of variance (modified for use with subgroups) or the Q-test of homogeneity.

All three procedures are mathematically equivalent.

� These analyses may be performed using either the fixed-effect or the random-

effects model within groups, but in most cases the latter is appropriate.

� In primary studies we use R2 to reflect the proportion of variance explained by

group membership. An analogous index, which reflects the proportion of true

variance explained by subgroup membership, can be used for meta-analysis.
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